
1/61

Scale Independence: Using Small Data to Answer

Queries onBig Data
Floris Geerts

University of Antwerp



2/61

Intro

Query answering on big data

I Queries can be slow on big data due the size of the data:

Q. .
I Current database technology tells us how to quickly answer queries

on “normal”-sized data.



3/61

Intro

Query answering on big data

I It would be great if we can answer Q on a big database using a
small database inside it!

I One could then rely on existing database technology to answer
queries on big data.

Q. .DQ. .



4/61

Scale Independence

Scale independent queries

I This idea has been pursued before...

“Scale independent queries that satisfy their performance
objectives on small data sizes will continue to meet those
objectives as the database size grows, ...”

I M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing applications. In CIDR, 2009.

I M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-tolerant query
processing in the cloud. In VLDB, 2011.

I M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale independence
through incremental precomputation. In SIGMOD, 2013.



5/61

Scale Independence

Query scaling classes

I Armbrust et al. distinguish between di↵erent query classes.

I Depending on how much data is needed to answer them:

independence over a larger and more powerful subset of SQL. For
example, as we demonstrate in Section 8, the PIQL query language
is sufficiently rich to support interactive web applications, includ-
ing the interactive components of the TPC-W benchmark.

1.3 Bounding Computation
Key to PIQL’s approach to scale independence is the calcula-

tion and enforcement of bounds on the number of key/value store
operations that a query will perform regardless of the size of the
underlying database. The PIQL query compiler uses static analy-
sis to select only query plans where it can calculate the number of
key/value operations to be performed at every step in their execu-
tion. Therefore, in contrast to traditional query optimizers, the ob-
jective function of the query compiler is not to find the plan that is
fastest on average. Rather, the goal is to avoid performance degra-
dation as the database grows. Thus, the compiler will choose a
potentially slower bounded plan over an unbounded plan that hap-
pens to be faster given the current database statistics. If the PIQL
compiler cannot create a bounded plan for a query, it warns the
developer and suggests possible ways to bound the computation.

This static analysis can be performed for some queries using ex-
isting annotations, such as the LIMIT clause [9] or foreign key
constraints. However, in many cases, it is insufficient to simply
limit the result size as intermediate steps also contribute to execu-
tion time. Therefore, PIQL extends SQL to allow developers to
provide extra bounding information to the compiler. First, PIQL
provides a PAGINATE clause, allowing the results of unbounded
queries to be efficiently traversed, one scale-independent interac-
tion at a time. Second, PIQL enables bounding intermediate results
through relationship cardinality constraints in the database schema.

1.4 Meeting SLOs
The bounded number of storage system operations is the domi-

nant driver of cost in PIQL query execution. However, simply hav-
ing an upper bound on the number of key/value store operations
is not enough to ensure customer satisfaction because, for inter-
active applications, performance objectives are typically based on
response time rather than operation count. In this paper, we focus
on applications whose performance requirements are expressed in
terms of Service Level Objectives (SLOs) framed as a target re-
sponse time for a fraction of the queries observed during a given
time interval; e.g., “99% of queries during each ten-minute interval
should complete in under 500 ms.”

PIQL provides an SLO compliance prediction model that uses
the query plan and the operation bounds to calculate the likelihood
of a (scale-independent) PIQL query meeting its SLO. In Section 8,
we show that for our benchmark queries, even a simple model can
accurately predict SLO compliance.

1.5 Summary
In this paper, we describe the PIQL language and system com-

ponents that implement and extend the original vision proposed in
an earlier position paper [4]. We demonstrate the expressiveness
of the PIQL language, as well as the scale independence of our
implementation, using two benchmarks: TPC-W, an online store,
and SCADr, a simplified microblogging service. We show linear
increases in request throughput and validate our SLO compliance
model on clusters of up to 150 machines. In summary, this paper
contains the following contributions:

• We describe the notion of scale independence for supporting
web applications in a “success-tolerant” manner and outline
an approach for achieving scale independence without sacri-
ficing data independence.

• We present PIQL, a minimal extension to SQL that allows
developers to express relationship cardinality and result size
requirements.

• We describe the PIQL query compiler, which bounds the
number of key/value store operations performed for a given
query.

• We present a performance model that helps developers deter-
mine acceptable relationship cardinalities and reason about
SLO compliance.

• We demonstrate the expressiveness of the PIQL language,
the accuracy of our SLO compliance prediction, and the scale
independence of our implementation using two benchmarks.

The remainder of this paper is organized as follows: Section 2
describes different classes of queries and how their performance re-
lates to the total size of the database. Section 3 presents the overall
architecture of the PIQL database engine, followed by a descrip-
tion of the DDL and DML extensions in Sections 4, the scale-
independent optimization techniques in Section 5, the prediction
framework in Section 6, and the execution engine in Section 7. In
Section 8, we summarize the results of our experiments using the
TPC-W and SCADr benchmarks. Section 9 discusses related work.
Section 10 presents conclusions and future research challenges.

2. QUERY SCALING CLASSES
Before going into the details of the PIQL system, it is useful to

step back and consider the sources of scale dependence in interac-
tive web applications. As shown in Figure 1, we can divide queries
into classes based on their performance scalability as the database
size increases. We briefly describe each of these classes below.

                                 

   

   

   

   

   

   

   

   

   

   

   

Database Size

A
m

ou
nt

 o
f R

el
ev

an
t D

at
a

Class III

Class I

Class IV

Class II

Label

Figure 1: A comparison of the scalability of various queries as
database size increases.

Class I (Constant): In the simplest case, the amount of data
required to process a query is constant. For example, in a web
shop, data needed to display a particular product or to show the
profile of a particular user based on a unique ID is naturally limited
regardless of how many products or users there are in the database.
The optimizer knows about this bound due to the fact that such a
query would have an equality predicate against the primary key of
the relations. Other types of queries that fall into this class include
queries with a fixed LIMIT that do not perform any joins, or that
only perform joins against a unique primary key.

Class II (Bounded): A second class of query involves data that
will grow as the site becomes more successful but that is naturally
bounded. For example, in social networks, it is known that while
people will gradually add more friends over time, the average per-
son has around 150 “real” friends [18]. Setting a maximum friend
limit of 5000 friends, as is done by Facebook, satisfies most cus-
tomers [7]. PIQL allows the developer to express these limits ex-
plicitly in the schema, through an extension to the DDL (see Sec-
tion 4.2).

Class III (Sub-linear or Linear): These queries require touch-
ing an amount of data that grows sub-linearly or linearly as the

I Class I: constant amount of data (key
value);

I Class II: bounded amount of data (5000
facebook friends);

I Class III: (sub-)linear amount of data;

I Class IV: superlinear (cartesian product).

I Class I & II queries are the focus of this talk.



6/61

Scale Independence

Questions:

1. Which queries are scale independent?

2. How to define this notion?



7/61

Scale Independence

Scale independent queries

A query Q is scale independent in a database D if

I Q(D) = Q(D
Q

) for some part D
Q

✓ D; and

I the size |D
Q

| of D
Q

is independent of the size |D| of D.

A query Q is scale independent if it is scale independent in all databases.

To answer scale independent queries one only needs a bounded amount
of data.

I Wenfei Fan, F, Leonid Libkin. On scale independence for querying big data. In PODS 2014.



8/61

Scale Independence

Checking scale independence

Not surprisingly, for FO queries:

I Testing scale independence is undecidable.

I The class of scale independent FO queries is not even recursively
enumerable.

Scale independence can also be uninteresting.

For (U)CQ queries:

I Only trivial CQ queries can be scale independent, e.g., queries that
output a constant tuple on all databases.

I This is due to monotonicity.



9/61

Scale Independence

Undecidable or uninteresting: End of story...

Thank you for your attention.



10/61

Scale Independence

We need some stronger assumptions on the data



11/61

Access constraints

PIQL: Performance-Insightful Query Language
Armbrust et al. propose an extension of SQL that allows to express

I relationship cardinalities;

I result size requirements
+ compiler that bounds the number of operations performed by query.

Schema:
facebook(member id,friend id)

Constraint:
facebook[member id -> friend id, 5000]

Query:
SELECT friend id
FROM facebook
WHERE member id=Trump

) Only requires fetching at most
5000 tuples.
(Probably less for Trump)

I M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-tolerant query
processing in the cloud. In VLDB, 2011.



12/61

Access constraints

PIQL: Constraints

Constraints are crucial in PIQL:

Relation facebook(id1, id2)
+ cardinality constraint facebook[id1 -> id2, 5000] (aka Facebook constraint)

Relation person(id, name, city)
+ key constraint person[id -> {person, city},1]

These constraints:

I bound the amount of data; and

I specify access patterns (how to access the
data)

} access constraints



13/61

Access constraints

Access constraints

⇢
person[id -> {person, city},1]

facebook[id1 -> id2, 5000]

�

I Available indexes:

I Given an id-value one can e�ciently fetch the corresponding name and
city values from the person table.

I Similarly for the facebook relation.

I Cardinality constraints:

I At most one tuple in person table for each id-value (key);

I At most 5000 friends for each member of Facebook.

Can we make queries scale independent by using such constraints?



14/61

Access constraints

Example: Query evaluation using access constraints

Consider query

Q(Trump, name) = 9id facebook(Trump, id) ^ person(id, name,NYC)

Execution plan:

1. Fetch all id-values associated with Trump using index facebook[id1 -> id2]

) at most 5000 tuples.

2. For each of the fetched id-values, fetch unique tuple in person using index
person[id-> { name, city}]

) at most 1 tuple per id-value.

3. Return all fetched name-values for persons living in NYC.

) at most 10000 tuples in total.

If such execution plan exists, then we say that a query is boundedly
evaluable.



15/61

Boundedly evaluable queries

Boundedly evaluable queries

We next define what boundedly evaluable queries are.



16/61

Boundedly evaluable queries

Databases that satisfy access constraints

I A database D conforms to a set A of access constraints, if it satisfies
these constraints.

I For each R(X ! Y ,N) in A, we have that |⇡
Y

(�
X=ā

(D))| 6 N for
any constant tuple ā.

I When looking at query equivalence, we mean A-equivalence, i.e.,
equivalence on all databases that conform to the access
constraints in A.



17/61

Boundedly evaluable queries

Boundedly evaluable queries

I A query Q is boundedly evaluable relative to a set A of access
constraints if

I there exists a bounded query plan ⇠
Q

such that
I for all databases D conform to A

Q(D) = ⇠
Q

(D).

Bounded query plans ensure that only a bounded amount of data is
fetched from the underlying data.

I Wenfei Fan, F, Leonid Libkin: On scale independence for querying big data. PODS 2014.
I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data, PODS, 2015.



18/61

Boundedly evaluable queries

Bounded query plans (bqplan)
I Starting from basic fetch operators, pipelining using constraints in A:

bqplan = fetch(X = ā,R ,Y )

bqplan = fetch(X 2 bqplan,R ,Y )

I SPJ-plan: Allowing projection, selection, renaming and product:

bqplan = ⇡
X

(bqplan)

bqplan = �
C

(bqplan)

bqplan = ⇢
A/B(bqplan)

bqplan = bqplan⇥ bqplan

I SPJU-plan: Further allowing union:

bqplan = bqplan [ bqplan

I RA-plan: Also allowing di↵erence:

bqplan = bqplan \ bqplan.



19/61

Boundedly evaluable queries

Example: Bounded query plan

Consider query

Q(Trump, name) = 9id facebook(Trump, id) ^ person(id, name,NYC)

Bounded query plan:

1. bqplan1(id1, id2) = fetch(id1 = Trump, facebook, id2)

2. bqplan2(id2) = ⇡id2(bqplan1)

3. bqplan3(id, name, city) = fetch(id 2 bqplan2, person, (name, city))

4. bqplan4(id, name, city) = �city=NYC(bqplan3)

5. bqplan(id1, name) = ⇡id1(bqplan1) ⇥ ⇡name(bqplan4).

On databases D conform to A, this query plan correctly evaluates Q
and fetches a bounded amount of data.



20/61

Boundedly evaluable queries

Question:

I What do we gain by this definition?



21/61

Boundedly evaluable queries

Bounded evaluation makes scale independence a bit more
interesting

Although it is still undecidable to decide whether an FO query is
boundedly evaluable...

...the presence of access constraints allow to identify interesting classes
of queries that are boundedly evaluable.

And this for CQ, UCQ, and FO queries.



22/61

Boundedly evaluable queries

Question:

I Which queries are boundedly evaluable?

I Déjà vu?



23/61

Querying under access patterns

Querying under access patterns...

Looks similar to the work on querying under limited access patterns by
Li, Chang, Deutsch, Nash, Ludäscher and others.

Consider query

Q(Trump, name) = 9id friend(Trumpi , ido) ^ person(idi , nameo ,NYCo)

and access patterns friend(idi , ido) and person(idi , nameo , cityo) indicating in-and
output positions.

Can it be answered using a valid access pattern sequence (query plan)?

I Chen Li, Edward Y. Chang: On Answering Queries in the Presence of Limited Access Patterns. ICDT 2001.
I Alin Deutsch, Bertram Ludäscher, Alan Nash: Rewriting queries using views with access patterns under integrity

constraints. Theor. Comput. Sci, 2007.
I Alan Nash, Bertram Ludäscher: Processing First-Order Queries under Limited Access Patterns. PODS 2004.
I ...



24/61

Querying under access patterns

Querying under access patterns

Syntactic condition:

A query is orderable when one can parse it from left to right using access
patterns.

I Orderable queries have a linear executing plan using access patterns.

Semantic condition:

Query is executable/stable if it is equivalent to an orderable query.

I Characterizations and complexity results for executable queries are
known.

Most of this work considers CQ and UCQ, but also fragments of FO.



25/61

Querying under access patterns

Querying under access patterns vs access constraints

However,

I Access patterns cover all attributes in relations; access constraints
are more flexible; and

I No cardinality constraints are embedded in access patterns.

I Standard equivalence vs. A-equivalence.

I Query plans are not bounded.



26/61

Querying under access patterns

Querying under access patterns vs access constraints

Nevertheless, it serves as inspiration:

Access patterns Access constraints

Executable/stable queries 7! Boudedly evaluable queries

Orderable queries 7! ??

We next generalize the notion of orderable queries in the context of
access constraints.



27/61

Covered queries

Covered queries

1. Define a syntactic fragment of conjunctive queries:

) covered queries.

2. Covered queries are boundedly evaluable (SPJ-plan).

3. Every boundedly evaluable CQ is A-equivalent to a covered CQ.

Access patterns Access constraints

Executable/stable queries 7! Boudedly evaluable queries

Orderable queries 7! covered queries

I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data, PODS, 2015.
I Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu. Bounded Conjunctive Queries. PVLDB, 2014.



28/61

Covered queries

Covered conjunctive queries

Intuitively, a conjunctive query is covered if

(i) all its relevant variables are bounded by access constraints

(ii) all its relations are properly indexed.

Precise definition uses deduction rules that propagate information on
bounds and indexes based on the structure of the query.

It is in PTIME to check whether a CQ is covered.

If covered, the successful deductive proof generates a bounded query plan.
(Hence, covered queries are indeed boundedly evaluable.)



29/61

Covered queries boundedness

Covered CQs: Deduction rules

(i) Bounding the free variables using access constraints.

Deduction rules I
Bnd

:

(Reflexivity)
If x̄ 0 ✓ x̄ then x̄ !I

Bnd

(x̄ 0, 1)
(Actualization)
If R(X ! Y ,N) 2 A then x̄ !I

Bnd

(ȳ ,N)
(Augmentation)
If x̄ !I

Bnd

(ȳ ,N) then x̄ [ z̄ !I
Bnd

(ȳ [ z̄ ,N)
(Transitivity)
If x̄ !I

Bnd

(ȳ1,N1) and ȳ1 !I
Bnd

(z̄ ,N2) then
x̄ !I

Bnd

(z̄ ,N1 · N2)

A conjunctive query Q(x̄) is bounded if for each x 2 x̄

⌃
Q

!I
Bnd

(x ,N
x

)

for some N
x

2 N, where ⌃
Q

are the variables in Q bound to a constant.



30/61

Covered queries boundedness

Example: Query with “bounded” variables

Consider query

Q(id1, name) = 9id, city facebook(id1, id) ^ person(id0, name, city)

^ id1 = Trump ^ city = NYC ^ id = id0

Is the variable “name” bounded?

1. ⌃
Q

= {id1, city}
2. ⌃

Q

!I
Bnd

(id, 5000) (Actualization)

3. id0 !I
Bnd

(name, city, 1) (Actualization)

4. ⌃
Q

!I
Bnd

(name, city, 5000) (Transitivity)

Similarly for variable id1. Hence,

⌃
Q

!I
Bnd

{(id1, 1), (name, 5000)}.

It takes O(|Q|(|A|+ |Q|)) time to check whether a CQ query is bounded.



31/61

Covered queries Indexiblity

Example: Boundedness alone does not su�ce

Consider query:

Q(user, photo, time, location) = Instagram(user, photo, time, location)

^ user = Trump ^ location = Bordeaux.

Access constraints:

Instagram[(user, location) ! (photo,N)]
Instagram[(user, location) ! (time,N 0)]

Then, using the deduction rules one can show that all variables in Q are
bounded.

Nevertheless, Q is not boundedly evaluable.



32/61

Covered queries Indexiblity

Example: Boundedness alone does not su�ce

Access constraints

Instagram[(user, location) ! (photo,N)] Instagram[(user, location) ! (time,M)]

Indexes can only fetch parts of the relation and full relation cannot be recovered
(lossy decomposition):

Trump photo1 time1 Bordeaux

Trump photo2 time2 Bordeaux

Trump photo3 time3 Bordeaux

6=

Trump photo1 Bordeaux

Trump photo2 Bordeaux

Trump photo3 Bordeaux

⇥

Trump time1 Bordeaux

Trump time2 Bordeaux

Trump time3 Bordeaux



33/61

Covered queries Indexiblity

Covered CQs: Revised deduction rules
Ensure that access constraints su�ce to correctly check existence of
tuples in base relations.

Instagram[(user, location) ! (photo,N)] Instagram[(user, location) ! (time,N 0)]

Additional access constraint is needed, e.g.,

Instagram[(photo, time) ! (user, photo, time, location,N 00)]

A refinement of the deduction rules I
Bnd

can be defined such that when
all relevant variables are bounded and indexed, then the query is
boundedly evaluable.

I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data, PODS, 2015.
I Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu. Bounded Conjunctive Queries. PVLDB, 2014.



34/61

Covered queries Indexiblity

Automatic bounded query plan generation

Access constraints:

Instagram[(user, location) ! (photo,N)] Instagram[(user, location) ! (time,N 0)]
Instagram[(photo, time) ! (user, photo, time, location,N)]

Deductive proof automatically gives bounded query plan:

1. bqplan1(photo) = ⇡photo(fetch((Trump,Bordeaux), instagram, photo))

2. bqplan2(time) = ⇡time(fetch((Trump,Bordeaux), instagram, time))

3. bqplan3(photo, time) = bqplan1(photo) ⇥ bqplan2(time)

4. bqplan4(user, photo, time, location) =

fetch((photo, time) 2 bqplan3, instagram, (user, photo, time, location))

5. bqplan5(user, photo, time, location) = �name=Trump^location=Bordeaux(bqplan4).



35/61

Covered queries Experiments

Question:

I How good are these query plans in practice?



36/61

Covered queries Experiments

Covered CQs: Experiments

Data:

I UK tra�c accident data (19 tables, 113 attributes, 89.7 million
tuples, 21.4GB)

I Ministry of Transport Test data (1 table, 36 attributes, 55 million
tuples, 16.2GB)

I TPCH (restricted to 8 tables, varying sizes up to 32GB)

Access constraints:

I UK tra�c accident data: 84 constraints (e.g., [date -> (aid,

610)]

I Ministry of Transport Test data: 27 constraints

I TPCH: 61 constraints

Queries: 15 queries on each dataset (varying selection conditions and #
joins).



37/61

Covered queries Experiments

Covered CQs: Experiments - TPCH

I 70% of queries turned out to be boundedly evaluable (when all access
constraints were “on”)

Comparison between generated bounded query plan vs mysql query
plan:

0.5

5

50

500

2500

0.25 0.5 1 2 4 8 16 32
0

25

50

75

100

El
ap

se
d 

tim
e 

(s
ec

)

|D
Q
| (

x 
10

0)

evalDQ
MySQL
|DQ|

0.5

5

50

500

2500

12 14 16 18 20
0

25

50

75

100

El
ap

se
d 

tim
e 

(s
ec

)

|D
Q
| (

x 
10

0)

evalDQ
MySQL
|DQ|

Average time vs |D| Average time vs |A|

I Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu. Bounded Conjunctive Queries. PVLDB, 2014.



38/61

Bounded evaluable queries Characterization

Semantic characterization?

Being covered is a syntactic condition, i.e., it depends on how the query is
written.

We also want a semantic characterization:

Suppose that Q is not covered. Is Q A-equivalent to a query Q 0 that is
covered?

Clearly, such queries can also be evaluated in scale independent way:

I Simply execute the bounded query plan for Q 0.



39/61

Bounded evaluable queries Characterization

Decision algorithm

Given CQ Q, is Q A-equivalent to a covered CQ?

1. Decompose Q ⌘A Q1 [ · · · [ Q
k

.
I Each Q

i

|= A and no redundant Q
i

’s.

2. Compute the infimum query infA(Q) of {Q1, . . . ,Q
k

}.
I For any other CQ Q 0 such that Q

i

✓ Q 0 for all i ,
we have that infA(Q) v Q 0.

3. Construct A-expansion expA(Q) of infA(Q).
I All possible “covered” atoms embedded in infA(Q) are added.

4. Identify maximal covered subquery Q
c

in expA(Q).

Theorem
A conjunctive query Q is A-equivalent to a covered CQ Q if and only if Q
is A-equivalent to the covered CQ Q

c

.



40/61

Bounded evaluable queries Characterization

Complexity

I The characterisation implies a co2NEXPTIME upper bound:
I exponential number of base queries Q

i

;
I infimum query is exponential in the number (and size) of base queries.

I Lower bound is open.



41/61

Bounded evaluable queries Beyond CQ

Beyond CQ

What can we say about other query languages?



42/61

Bounded evaluable queries Beyond CQ

Boundedly evaluable queries: UCQ

For unions of conjunctive queries (UCQ)

I Bounded query plans may use union (SPJU-plan).

I Notion of covered UCQ can be defined.

I Every boundedly evaluable UCQ is A-equivalent to a covered UCQ.

I Without impact on complexity.

Similarly for conjunctive queries with (nested) unions.

I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data, PODS, 2015.



43/61

Bounded evaluable queries Beyond CQ

Boundedly evaluable queries: First-order logic

A notion of covered FO queries has recently been proposed:

1. Convert FO query Q to relational algebra expression e
Q

.

2. Require in the query tree T
e

Q

of e
Q

that:
I Every max conjunctive subtree is covered.

(I.e., di↵erence is pushed to top levels on unions of covered sub-queries)

Theorem
Every covered FO query is boundedly evaluable (RA-plan) and every
boundedly evaluable FO query is A-equivalent to a covered FO query.

It takes PTIME to check whether an FO query is covered.

I Yang Cao, Wenfei Fan: An E↵ective Syntax for Bounded Relational Queries. SIGMOD 2016.



44/61

Bounded evaluable queries Beyond CQ

Boundedly evaluable queries: First-order logic

A RA bounded query plan can be generated for covered FO queries.

Underlying idea:

1. Encode Q and A as a hypergraph;

2. A hyperpath corresponds to a bounded query plan.

Algorithm: Find a hyperpath.

Experiments show that these query plans also outperform those used by
mysql.



45/61

Generating plans from proofs

Generating plans from proofs

In recent work by Benedikt et al., the following approach is followed:

1. Isolate a semantic property that any input query Q must have with
respect to the class of target plans in order to have an equivalent
plan of the desired type.

2. Express this property as a proof goal: a statement that formula �2

follows from �1.

3. Search for a proof of the entailment, within a given proof system.

4. From the proof, extract a plan.

I Michael Benedikt, Balder ten Cate, Efthymia Tsamoura: Generating Plans from Proofs. ACM Trans. Database
Systems, 2016. Based on PODS 2014 paper.



46/61

Generating plans from proofs Access determinacy

Semantic property: Access determinacy

In the context of access patterns (not access constraints!):

A query Q is said to access determined if

I for any D and D 0 that have the same accessible part

AccPart(D) = AccPart(D 0)

I it holds that Q(D) = Q(D0).

Intuitively, AccPart(D) are all values that can be accessed from D.

Clearly, Q cannot be answered using access patterns if it is not
access-determined.



47/61

Generating plans from proofs Access determinacy

Access determinacy: Entailment

An FO query Q is access determined if and only if

Q ^ Access+ |= Q
acc

where Q
acc

is the inferred accessible version of Q

I obtained by replacing each R in Q by its accessible part

and Access+ is an axiomatization of accessibility:

I rules that tell what is accessible and what not, based on access
patterns.



48/61

Generating plans from proofs Access determinacy

Semantic property: Access monotonic determinacy

A query Q is said to access monotonic determined if

I for any D and D 0 that have contained accessible parts

AccPart(D) ✓ AccPart(D 0)

I it holds that Q(D) ✓ Q(D0).



49/61

Generating plans from proofs Access determinacy

Access monotonic determinacy: Entailment

A CQ query Q is access monotonic determined if and only if

Q ^ Access |= Q
acc

where Q
acc

is the inferred accessible version of Q and Access is an
axiomatization of accessibility:

I rules that tell what is accessible, based on access patterns.



50/61

Generating plans from proofs Access determinacy

Access determinacy: Plans from proofs

Nice property: Chase proofs witnessing

Q ^ Access |= Q
acc

or

Q ^ Access+ |= Q
acc

result in SPJ and RA-plans, for CQ and FO queries, respectively.

Furthermore, cost functions can be incorporated to find cost optimal
proofs (plans).



51/61

Generating plans from proofs Bounded access determinacy

Future work: Bounded access (monotonic) determinacy?

The following seems a natural thing to try:

1. Define a notion of bounded access (monotonic) determinacy.

2. Consider access constraints instead of access patterns.

3. Taking into account A-equivalence.

4. Extract bounded query plans from proofs.

TODO...



52/61

Recap

Recap

I Successfully identified class of covered queries that are boundedly
evaluable.

I Every boundedly evaluable query is A-equivalent to covered one.

I Definition of covered queries “implies” bounded query plan
generation procedure.

I Generated query plans work well in practice.



53/61

Other Issues

Other issues

I Scale independent query approximation.

I Incremental scale independence.

I Scale independence using views.



54/61

Other Issues Approximation

Scale independent query approximation
Given a query Q that is not boundedly evaluable.

Find two boundedly evaluable queries Q` (lower envelope) and Q
u

(upper envelope) such that

Q` vA Q vA Q
u

.

and Q` is maximal and Q
u

is minimal wrt A-containment.

I Solved for CQ, when Q
u

and Q` are assumed to be covered CQ
queries.

I Characterization and complexity results are known.

I Full treatment is required....

I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data, PODS, 2015.



55/61

Other Issues Approximation

Query approximation: Example

Consider
Q(x) = 9y , z ,w (R(w , x) ^ R(y ,w) ^ R(x , z) ^ w = 1)

and access constraint
R(A ! B,N).

Then Q is not boundedly evaluable.

We can sandwich Q between two boundedly evaluable queries:

Q`(x) = 9y , z (R(1, x) ^ R(y , 1) ^ R(x , z) ^ R(x , y))

and
Q

u

(x) = 9y , z (R(1, x) ^ R(x , z)).

Furthermore, |Q(D) \ Q`(D)| 6 N and |Q
u

(D) \ Q(D)| 6 N.

Such envelopes, if they exist, can be obtained by relaxing and generalizing the input
query.



56/61

Other Issues Updates

Incremental scale independence
�D = (�D,rD): List of tuples �D to be inserted into D and a list rD
of tuples to be deleted.

�Q = (�Q,rQ): queries such that
Q((D \rD)[�D)) = (Q(D)�rQ(�D,D))[�Q(�D,D)

Then, Q is incrementally boundedly evaluable i↵

I �Q is boundedly evaluable; and

I rQ is boundedly evaluable.

That is, to incrementally answer Q in D in response to �D, we need to
access a bounded number of tuples from D

I Wenfei Fan, F, Leonid Libkin: On scale independence for querying big data. PODS 2014.
I M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale independence

through incremental precomputation. In SIGMOD, 2013.



57/61

Other Issues Views

Scale independence using views

Enlarge the class of boundedly evaluable queries by using cached views:

I Cached views allow fast access ) all view data can be used.

Extension of bounded query plans:

I Allow to fetch data from views in an unrestricted way.

Complication:

I Ensure that views only pass a bounded amount of data to indexes
(access constraints) on base relations.

Complexity results and e↵ective syntax for CQ and FO are established,
assuming a (constant) bound on the size of query plans.

I Wenfei Fan, F, Leonid Libkin: On scale independence for querying big data. PODS 2014.
I Yang Cao, Wenfei Fan, F., and Ping Lu. Bounded Query Rewriting Using Views. PODS 2016.



58/61

Conclusion

Conclusion

I Boundedly evaluable queries are a nice concept with interesting links
to

I Safety;
I Querying using access patterns;
I Access determinacy and query rewriting.

I Main complications arise from the presence of cardinality
constraints.

I Experiments show that bounded query plans can outperform query
plans suggested by optimizer.



59/61

Conclusion

Conclusion

I I did not mention complexity results for various associated decision
problems.

I These can be found here:

I Yang Cao, Wenfei Fan. An E↵ective Syntax for Bounded Relational Queries. SIGMOD 2016.
I Yang Cao, Wenfei Fan, F. and Ping Lu. Bounded Query Rewriting Using Views. PODS 2016.
I Wenfei Fan, F, Yang Cao, and Ting Deng. Querying Big Data by Accessing Small Data. PODS 2015.
I Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu. Bounded Conjunctive Queries. PVLDB 2014.
I Wenfei Fan, F, Leonid Libkin: On scale independence for querying big data. PODS 2014.



60/61

Future work

Looking ahead

I Bounded access determinacy and generation of bounded query
plans from proofs.

I Enlarge class of covered FO queries.

I Index suggestion to make queries boundedly evaluable.

I Integration with integrity constraints.

I Scale-independence in a distributed/parallel context.

I Scale-independence on graph data and query languages.



61/61

Thank you. The End. Questions?

(Thanks to Wenfei Fan, Leonid Libkin, Cao Yang, Ting Deng, Ping Lu)

(and don’t forget to send your best work to PODS 2017, 1st deadline June 17, 2016)


	Intro
	Scale Independence
	Access constraints
	Boundedly evaluable queries
	Querying under access patterns
	Covered queries
	boundedness
	Indexiblity
	Indexiblity
	Experiments

	Bounded evaluable queries
	Characterization
	Beyond CQ

	Generating plans from proofs
	Access determinacy
	Bounded access determinacy

	Recap
	Other Issues
	Approximation
	Updates
	Views

	Conclusion
	Future work

